Length of the drilling holes of zygomatic implants inserted with the standard technique or a revised method: A comparative study in dry skulls

Paula Chiattone Corvello, Aline Montagner, Felipe Correa Batista, Ricardo Smidt, Rosemary Sadami Shinkai

1 Graduate Program in Oral Rehabilitation – Implantology, Lutheran University of Brazil, Canoas, RS, Brazil
2 Department of Oral Surgery, Lutheran University of Brazil, Canoas, RS, Brazil
3 Department of Prosthodontics, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil

SUMMARY

Aim: This study aimed to evaluate the length of the holes drilled for the placement of zygomatic implants using two surgical techniques: the original Brånemark and the Exteriorized (extrasinus) protocols. The most frequent implant length used and position where the implants emerged in the zygomatic bone were recorded.

Materials and methods: Both surgical techniques for inserting zygomatic implants were performed on the right and left sides of 18 dry adult skulls. The depth of the drilling holes in the zygomatic bone for placement of zygomatic implants and the corresponding implant length were measured. The position where the implant emerged was recorded using a standardized division of the zygomatic bone surface into 13 sections (Fig. 3).

Results: The Exteriorized technique showed significantly longer drilling holes for zygomatic implants than the Brånemark technique (P < 0.001). For both techniques, the most commonly used implant lengths were 30 and 35 mm, and the most frequent position where the implants emerged were sections 9 and 12.

Conclusions: The results suggest that the Exteriorized technique increases the length of the drilling holes in the zygomatic bone, which may provide higher initial mechanical stability for zygomatic implants than the original Brånemark technique.

Introduction

Severe vertical and horizontal bone resorption in the edentulous maxilla may be caused by a complex interaction of local and systemic factors, such as early tooth loss, periodontal disease, pneumatization of the maxillary sinuses, and tumour resection (Nkenke et al., 2003; Schmidt et al., 2004). Treatment options for the rehabilitation of the severely atrophic maxilla include conventional complete dentures and implant-supported prosthesis with or without sinus augmentation with bone grafts (Schmidt et al., 2004). The clinical decision depends on the patient’s local and systemic conditions, personal preferences, and cost. Elderly or medically compromised patients may not be suitable for bone grafting because of increased surgical risk and morbidity. In these situations, when the surgeon and the patient prefer to avoid surgical reconstruction with autologous bone grafts or when this choice is not available clinically, the use of zygomatic implants is an alternative procedure for treatment of the severely atrophic maxilla (Hirsch et al., 2004; Aparicio et al., 2008; Ventorre et al., 2008).

There still is no consensus on the ideal technique for placing zygomatic implants in relation to the degree of bone anchorage and implant inclination (Aparicio et al., 2008). Little is known about the quantity of zygomatic bone around zygomatic implants placed with different techniques, which could affect initial mechanical implant stability. This in-vivo study in dry skulls aimed to compare the Brånemark technique and the Exteriorized technique in relation to:

1) the length of the drilling holes in the zygomatic bone for placement of zygomatic implants;
2) the most frequently used zygomatic implant length; and
3) the most frequent position where the implants emerged in the zygomatic bone.

Materials and methods

The research protocol was approved by the institutional review board according to national and international standards. Eighteen
Dry skulls from the Laboratory of Human Anatomy, Lutheran University of Brazil, in Canoas, RS, Brazil, were used. The Brånemark technique (Brånemark et al., 2000) was performed in nine skulls (Fig. 1A), while the other nine skulls were subjected to the Exteri-orized technique (Migliorança et al., 2006) (Fig. 1B). Each surgical technique was performed on the right and left zygomatic bones of the same skull according to anatomical landmarks as follows:

a) Original Brånemark technique: Firstly, a window was opened in the anterior wall of the maxillary sinus to allow visualization of the zygomatic bone. Perforation of the zygomatic pillar (in the first molar region) was performed with a 2.9 mm-diameter cylindrical bur. The implant was placed through the maxillary sinus and emerged palatal to the crestal ridge.

b) Exteriorized technique: The initial perforation was also performed in the zygomatic pillar (first molar region), but perforation of the zygomatic pillar was performed lateral to the maxillary sinus, leading to the mid-third of the zygomatic implant becoming located outside (i.e. external to) the maxillary sinus in a vertical position. This results in the implant emerging on the crestal ridge (Fig. 2).

To measure the length of the drilling holes for the zygomatic implants in the zygomatic bone, the implant holes were prepared using the 2.9 mm-diameter surgical bur from the Zygoma Kit (Nobel Biocare, Göteborg, Sweden). For both techniques the initial perforation in the maxillary ridge was done in the zygomatic pillar. This perforation produced a cylindrical tunnel with a lower bevel (corresponding to the entrance in the zygomatic bone) and an upper bevel (corresponding to the emergence of the preparation in the zygomatic bone) (Fig. 2). The length of the drilling holes in the zygomatic bone was measured, in millimetres, from the lower to the upper bevel using a probe supplied with the Zygoma Kit. All measurements were done by one calibrated examiner in duplicate with a one-month interval between measurements (intra-examiner agreement tested by intraclass correlation coefficient test was
and implant length (in millimetres) were statistically analyzed by paired Student’s t-test at a significance level of 5%. The association between surgical technique and emergency site or implant length was analyzed by Chi-square tests.

Results

The length of the drilling holes in the zygomatic bone varied as a function of surgical technique. The mean value of the Exteriorized technique was significantly higher than that of the original Brånemark technique (Table 1). In relation to implant length, no significant difference was found between the two techniques (Table 1). For both techniques the most commonly used implant lengths were 30 and 35 mm, and zygomatic bone sections 9 and 12 were the commonest positions where the implants emerged (Table 2). There was no association between surgical technique and emergency site or implant length analyzed by Chi-square tests.

Discussion

This study showed that the Exteriorized technique provided longer holes for zygomatic implant placement in the zygomatic bone than the Brånemark technique, but no difference in implant length was found. In the Exteriorized technique the lateralized placement of the zygomatic implant with the position where the implants emerging in the first molar region provides more penetration of the implant in the zygomatic bone. The Exteriorized technique has fewer surgical steps than the Brånemark and Simplified methods, is less invasive, reduces surgical time, and provides a shorter cantilever as the implant position where the implant emerges is located on the crestal ridge in the first molar region.

Preference for one technique over the other should take into consideration the concavity formed by the ridge crest, maxillary sinus, and region of implant insertion in the zygomatic bone. When the maxilla is severely resorbed, this concavity is small, and the original Brånemark technique should be used (Fig. 1A). On the other hand, when maxillary resorption generates a large concavity, it would be better to exteriorize the zygomatic implant (Fig. 1B) (Migliorança et al., 2006).

Although in the original Brånemark technique the zygomatic implant is inserted in the second premolar region, in clinical practice the implant often emerges in the first molar region (Pi-Urgell et al., 2008). In the present study the initial perforation for both techniques was performed in the alveolar ridge corresponding to the zygomatic pillar with the position where the implants emerge in the first molar region as described in the Simplified (Stella and Warner, 2000) and Exteriorized (Migliorança et al., 2006) revisions. This modification was adopted to standardize the initial

Table 1

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Surgical technique</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone contact (mm)</td>
<td>Exteriorized</td>
<td>18</td>
<td>14.11</td>
<td>5.93</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Brånemark</td>
<td>18</td>
<td>8.39</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>Implant length (mm)</td>
<td>Exteriorized</td>
<td>18</td>
<td>34.72</td>
<td>4.99</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>Brånemark</td>
<td>18</td>
<td>36.94</td>
<td>5.18</td>
<td></td>
</tr>
</tbody>
</table>

- Student t-test, 5% significance level.

Table 2

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Surgical technique</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant length⁴</td>
<td>Exteriorized</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brånemark</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Emergency site¹</td>
<td>Quadrant #5</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quadrant #8</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quadrant #9</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quadrant #12</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

- Implant length (χ² = 2.38; P = 0.497).
- Emergency site (χ² = 1.56; P = 0.670).

[Fig. 3. Zygomatic bone covered by a transparent plastic film divided into 13 sections according to the method proposed by Rigolizzo et al.: the implant perforation emerged in section #12 in this skull. On the right a schematic drawing of the 13 standardized sections to locate the implant emergency site on the zygomatic bone surface.]

Please cite this article in press as: Corvello PC, et al., Length of the drilling holes of zygomatic implants inserted with the standard technique,..., Journal of Cranio-Maxillo-Facial Surgery (2010), doi:10.1016/j.jcms.2010.03.021
perforations and allow for comparison of the implant/length of the drilling holes of between the Exteriorized and Brånemark methods, i.e., to indirectly assess the influence of implant inclination and placement inherent to the surgical technique on the length of the drilling holes in the zygomatic bone.

In conventional dental implants initial implant stability derives from mechanical retention between implant surface and bone tissue, and this is also important when using zygomatic implants. Clinical studies have shown good predictability of oral rehabilitation with two or four zygomatic implants (Balshi et al., 2003; Bothur et al., 2003), and the success rate of zygomatic implants anchored only in zygomatic bone after maxillary tumour resection varies from 65% to 75% (Weingart et al., 1992). When the anchorage occurs in both zygomatic bone and maxillary ridge, the success rate ranges between 82% and 100% (Bedrossian et al., 2000; Vrieling et al., 2003; Ferrara and Stella, 2004; Hirsch et al., 2004; Galdin-Gil et al., 2007). In the present study most implants would have bone contact to only one third of the total zygomatic implant length, independently of the surgical technique. This ratio does not seem to represent a clinical problem with sufficient implant fixation in zygomatic and maxillary cortical layers (Nkenke et al., 2003; Kato et al., 2005; Rigolizzo et al., 2005), even when zygomatic implants are placed with a large inclination. Experimental results suggest that clinical evidence is available regarding the long-term biomechanical effect of implant inclination on bone tissue. Inclined implants provide a larger polygonal area at the position where the implant emerges, which may possibly affect load distribution (Brunske and Skalak, 2003). Skalak (1983) used a mathematical model of a fixed prosthesis supported by three implants to show that axial forces on tilted distal implants decreased in comparison with straight implants. One recent experimental study using strain gauges found that an inclination of distal implants provides better distribution of axial forces and bending moments in fixed prostheses supported by five abutments and reduces the cantilever effect on force magnitude (Geremia et al., 2009). A one-year follow-up clinical study reported 0.9 mm of bone loss around inclined implants in immediately loaded fixed maxillary prostheses supported by four implants (System All-on-Four) with two inclined distal implants (Maló et al., 2005). Krcmanov et al. (2000) reported cumulative success rates in the maxilla at 5 years were 98% for tilted implants and 93% for non-tilted implants, whereas Aparicio et al. (2001) found that the cumulative success rate was 95.2% (survival rate: 100%) for the tilted implants, 91.3% (survival rate: 96.5%) for the axial implants, and the prosthesis survival rate was 100%, after 5 years. These findings suggest that the use of tilted implants is an effective alternative to more complex surgical procedures, and satisfactory medium-term clinical results show that the technique may allow for longer implants to be placed with improved bone anchorage.

Zygomatic implants are commercially available with length ranging from 30 to 52.5 mm. In the present study, the most used implant lengths were 30 and 35 mm for both techniques. A recent review of 101 zygomatic implants placed according to the Brånemark technique showed that the most frequent implant lengths were 40 and 47.5 mm (Pi-Urgell et al., 2008). Differences in the position where the implants emerge (second premolar and first molar) and ethnic characteristics may explain part of these discrepancies.

In relation to the position where the implants emerge on the zygomatic bone surface, in both Exteriorized and Brånemark techniques the most frequent positions were 0° and 12°, using the method described by Rigolizzo et al. (2005). These findings are different from the Brånemark System Manual (Brånemark et al., 2000), which reports that sections 5, 6, 8, and 9 have the best potential for the insertion of zygomatic implants. Likewise, Rigolizzo et al. (2005) evaluated 120 zygomatic bones in dry skulls and showed that regions 5 and 8 were thicker and would be more appropriate for the placement of zygomatic implants. However, Rigolizzo et al. (2005) did not assess bone quality or consider the pneumatization of the maxillary sinus inside the zygomatic bone.

This in-vivo study has some limitations regarding the methods used to measure implant lengths and locate the position where the implants emerge as the complex tridimensional shapes do not allow strict standardization of dimensions for sections of the zygomatic bone surface, sinuses, and alveolar crests. Nevertheless, the present findings suggest that the Exteriorized technique resulted in an increased length of the drilling holes in the zygomatic bone compared to the original Brånemark technique and may provide better mechanical stability for zygomatic implants. Further biomechanical studies are necessary to see if this longer length of the drilled holes for placement of zygomatic implants provided by the Exteriorized revision is reflected in a gain of implant mechanical stability under loading.

Conclusion

Within the limitations of this study, the results suggest that the Exteriorized technique increases the length of the drilling holes in the zygomatic bone, which may provide higher initial mechanical stability for zygomatic implants than the original Brånemark technique.

References

Rigolizzo et al. (2005).