Implant-Supported Rehabilitation of the Severely Atrophic Maxilla: A Clinical Report

Miguel Peñarrocha-Diago, MD, DDS, PhD; Roberto Uribe-Origone, DDS, MDS; and Juan Guarinos-Carbó, MD, DDS, PhD

Implant-supported rehabilitation in the posterior maxillary region presents a series of challenges because of the possibility of increased pneumatization of the maxillary sinus after dental loss. In cases where significant maxillary bone resorption has occurred, efforts center on maximizing the use of the remaining bone to afford primary stability to the implants. This clinical report describes a patient with extreme maxillary atrophy for whom fixed rehabilitation supported on 8 implants was accomplished. A zygomatic implant, a pterygomaxillary implant, and 2 implants mesial and distal to both canine eminences were placed. This rehabilitation was accomplished with a less invasive technique and in a much shorter time period compared to a sinus lift procedure. One year after prosthetic loading, the clinical and radiological results remain satisfactory.

INDEX WORDS: severe maxillary atrophy, zygomatic fixtures, pterygomaxillary implants, paranasal angulation of implants

The loss of posterior maxillary alveolar bone results in reduction of the residual ridge in both height and thickness. In addition, the maxillary sinus expands as a result of hyperpneumatization. This zone often exhibits poor bone quality, generally involving type 3 or 4 bone, according to the Lekholm and Zarb classification, resulting in an area that lacks primary stability and that may compromise osseointegration. A variety of techniques have been proposed to resolve the problem of maxillary atrophy, with the most widely used approaches being elevation of the maxillary sinus floor and surgical maxillary reconstruction with iliac crest, cortical plate expansion, and ostectomy sinus lift technique, or calvarial autologous bone grafts.

To optimize primary fixation, the implants are often positioned in those zones having the most optimal residual bone. Following extraction of the maxillary first molar, an increased amount of bone is retained in the alveolus of the palatal root. In the completely edentulous patient, this affords a good option for placing canine post and paranasal angulation implants. In most cases, the maxillary tuberosity lacks a cortical component, although it joins inferiorly to the pterygoid and pyramidal processes of the palatal bone. This offers a very compact cortical layer capable of providing primary stability for pterygoid implants. In addition, zygomatic implants have been developed for rehabilitating completely edentulous cases with advanced maxillary resorption, using the zygomatic bone as an anchor for oral implants. Both pterygoid and transzygomatic implants require the presence of other implants mesial to the maxillary sinus to ensure prosthetic stability and function.

This clinical report describes a patient with severe maxillary atrophy, whose implant-supported rehabilitation was carried out making maximum use of the residual bone of the canine, pterygoid, and maxillo-malar sites.

Clinical Report

A 48-year-old non-smoking female had been fully edentulous in the maxillary arch for 10 years, with
sinus hyperpneumatization and severe maxillary atrophy. She wore a mandibular fixed prosthesis supported by the remaining teeth in the mandible, and a poor-fitting complete maxillary prosthesis with inadequate retention. The prosthesis had been frequently modified in the past. The patient’s chief complaint was that she was unhappy with the retention and fit of the current maxillary denture. Following clinical examination, development of articulated diagnostic casts, and radiographic studies, including panoramic radiography (Fig 1) and computed tomography, a treatment plan involving fixed implant-supported rehabilitation was developed.

Surgery was carried out under intravenous sedation with midazolam with close clinical monitoring. After local anesthetic infiltration (4% articaine with 1:200,000 epinephrine), a supracrestal linear incision was made from one tuberosity to the other, raising a full thickness flap and revealing a crest of bone with a width of approximately 3 mm. The recipient sites were prepared using osteotomes in the anterior maxillary region. Four threaded ITI® implants (ITI Straumann, Waldenburg, Switzerland) with SLA surfaces, measuring 12 mm in length and 4.1 mm in diameter were placed in zones 1.4, 1.3, 2.2, and 2.4. As a result of minimal (3 mm) bone width, fenestrations and bone dehiscences occurred during implant placement, principally in the anterior maxillary region—zones 1.4, 1.3, and 2.2 of the vestibular table (Figs 2 and 3). Under infiltrating anesthesia, block parasymphyseal autologous bone grafts were harvested with a trephine bur and affixed with osteosynthesis screws to cover the dehiscences and fenestrations (Fig 4).

Based on the technique described by Tulasne, an ITI® pterygoid implant measuring 16 mm in length and 4.1 mm in diameter was positioned in each hemiarch with good primary fixation. Brånemark Zygomatics Fixtures® (Nobel Biocare, Göteborg, Sweden) measuring 40 mm in length were then placed, following the sinusal bone window technique of the Zygomaticus Fixture, Brånemark System®. Primary closure was obtained with 3.0 silk, leaving all the implants submerged. The patient’s complete maxillary prosthesis was relieved directly above the implants and adapted with tissue conditioner (Viscogel, Dentsply-Detrey, Konstanz, Germany). Controlled panoramic X-rays were obtained (Fig 5), and the required postoperative instructions were provided. Prescribed medications included amoxicillin 500 mg, ibuprofen...
600 mg, and paracetamol 650 mg with codeine 10 mg every 8 hours. Mouth rinses with 0.12% chlorhexidine digluconate twice daily were also prescribed.

Six months later the second stage of surgery was performed; healing abutments were placed and impressions were made (Fig 6) in preparation for the fixed complete maxillary prosthesis (Figs 7 and 8). One year after prosthetic loading, the implants appeared clinically and radiologically normal, and the patient reported significant improvement in oral function.

Discussion

In the extremely atrophic maxilla, implantation offers the possibility of increasing the maxillary dimension with autologous grafting from a bone-rich donor zone. However, this entails an added risk, i.e., possible graft failure, and moreover, often requires general anesthesia. Limiting factors include the marked resorption of bone harvested from the iliac crest during healing, and the limited volume of bone afforded by calvarial grafts. The discomfort experienced by patients in the donor region during the postoperative period constitutes another important factor.

Elevation of the floor of the maxillary sinus provides another option, employing implants that penetrate 2–3 mm into the floor of the maxillary and nasal sinuses. Brånemark et al have reported a survival rate of 88–96% in such cases. In patients with insufficient bone, filling with graft material is required. Mixtures of hydroxyapatite and calcium sulfate have been used, as well as autologous bone, allografts, and xenografts. This, in turn, requires additional surgery, as well as the necessity of obtaining bone from a donor site (chin, tuberosity, mandibular retromolar trigone, iliac crest, or skull). In cases of severe maxillary resorption, with remnant bone heights of 3 mm, implant surgery should be postponed.
months after direct elevation of the sinus floor. As a result, placing implants in the maxillary sinus zone required direct elevation of the sinus floor in 2 steps. Reported success rates for delayed implantation range from 80.9% according to Blomqvist et al to 87.4% and 94% as reported by Jensen and Lozada et al. Although this is a common and safe technique, it is not without potential complications such as sinusitis, graft and implant losses, and osteomyelitis. In the case described in this clinical report, the patient rejected the proposal involving second-stage surgery and prolongation of the waiting time for prosthesis preparation.

Placing implants in pterygoid or zygomatic zones represented complex but valid surgical alternatives for this patient. Both techniques afford very high survival rates. An 80% success rate for a series of 52 pterygoid implants has been reported by Tulasne, while Balshi and Wolfinger have reported a success rate of 88.2% from a sample of 356 implants. Pi, in 1998, reported a 97.2% success rate in 177 implants, and Raspall in 1998 reported success in 99% of 238 implants. A high proportion of success for zygomatic implants has also been reported. Bränemark et al reported a 97% survival rate in 164 implants with a follow-up of 1–10 years. Aparicio and Malevez reported successful placement of 58 implants and provided a review of the technique and the preparation of prostheses.

In the clinical situation described in this report, a combination of implantation techniques was judged appropriate and resulted in a satisfactory prosthetic outcome, less surgical trauma and waiting time than with other alternatives, and perhaps most importantly, optimum acceptance by the patient.

Acknowledgment

The authors gratefully acknowledge the laboratory assistance of Rafael Gil in the fabrication of the prosthesis.

References

15. Peñarrocha M, Sanchis JM, Guarinos J, et al: Estudio comparativo entre la técnica convencional y la de...